THE TOPIO ALGORITHMS FROM THE 20TH CENTURY

AlexTownsend
Cornell University

THE TOPIO LIST

```
1946:The Metropolis Algorithm
1947: Simplex Method
1950: Krylov Subspace Method
195 I: The Decompositional Approach to Matrix Computations
1957: The Fortran Optimizing Compiler
1959: QR Algorithm
1962: Quicksort
1965: Fast Fourier Transform
1977: Integer Relation Detection
1987: Fast Multipole Method
```


Dantzig von Neumann

Hestenes Householder

Backus

Hoare

WHAT IS AN ALGORITHM?

Definition:

"An algorithm is a sequence of finite computational steps that transforms an input into an output" [Cormen and Leiserson, 2009]

Set of instructions

Recipe

while(1), end

NUMERICAL ANALYSIS

A definition
"The study and development of algorithms that use numerical approximation"

How many of the top 10 algorithms are in numerical analysis?
Potentially all of them
Floating point arithmetic

$1 / 3 \approx 001111111101$

$$
1 / 3 \approx(-1)^{s}\left(1+\sum_{i=1}^{52} b_{52-i} 2^{-i}\right) \times 2^{e-1023}
$$

Algorithms implemented in floating point arithmetic are studied and developed by numerical analysts

OVERVIEW OFTALK

A top 10 algorithm

How it works?

How do l use it?

Open problem

1959: QR ALGORITHM

The Tacoma Narrows bridge in Nov 1940

Collapsed in $80 \mathrm{~km} / \mathrm{h}$ winds

NUMERICAL SIMULATIONS

Eigenvalue
Resonant frequencies are eigenvalues: $A \underline{v}=x \underline{v} \quad \underline{v} \neq 0$
Eigenivector

HOW DOES IT WORK?

$$
\begin{aligned}
& A=\text { symmetric } \\
& \text { for } k=1,2, \ldots \\
& \qquad \begin{array}{l}
A=Q * R \\
A=R * Q
\end{array} \\
& \text { end }
\end{aligned}
$$

The final diagonal matrix contains all the eigenvalues

Francis

HOW DO I USE IT?

Rootfinding and global optimization
Matrix determinant
$p(x)= \pm \operatorname{det}(A-x I)$

characteristic
Identity matrix polynomial of A

A tiger's tail

OPEN PROBLEM

Let $p(x, y)$ be a degree (n, n) polynomial. Construct $n \times n$ matrices A, B, and C such that

$$
p(x, y)=\operatorname{det}(A+x B+y C)
$$

Compare to: $p(x)= \pm \operatorname{det}(A-x I)$

Need it to solve:

$$
p(x, y)=q(x, y)=0
$$

1965:THE FAST FOURIERTRANSFORM

"Mozart could listen to music just once and then write it down from memory without any mistakes" [Vernon, 1996]

A simple example:

sound

|Frequencies|

$\operatorname{sound}(t)=3 \cos (2 \pi 10 t+0.2)+\cos (2 \pi 30 t-0.3)+2 \cos (2 \pi 40 t+2.4)$

HOW DOES IT WORK?

Given equally spaced samples $f(0 / n), f(1 / n), \ldots, f((n-1) / n)$, find a_{k} so that

$$
f(j / n)=\sum_{k=-n / 2}^{n / 2-1} a_{k} e^{2 \pi i k(j / n)}, \quad 0 \leq j \leq n-1 .
$$

$$
\left(\begin{array}{c}
f(0 / n) \\
\vdots \\
f((n-1) / n)
\end{array}\right)=F\left(\begin{array}{c}
a_{-n / 2} \\
\vdots \\
a_{n / 2-1}
\end{array}\right), \quad F_{j k}=e^{2 \pi i k(j / n)}
$$

Cooley Tukey
F has a sparse factorization. For $n=16$ we have

HOW DO I USE IT?

An automatic way to tell us how "complicated" a function is.

FFT

OPEN PROBLEM

Let everyone be a Mozart

An example with chords:
Eight

playing

My sheet music for cellos \%

Play back

等

1987:THE FAST MULTIPOLE METHOD

In 4 billion years time...

HOW DO I USE IT?

The SVD gives the best low rank approximations:

Original

rank I

rank 3

rank 10

rank 50

The low rank format saves computational time and storage costs

OPEN PROBLEM

Why are so many matrices/functions in practice of low rank?

A random matrix is of full rank so "average" matrices are not...
...but, these are of low rank.

Even the American flag is of low rank!

THETOPIO LIST (AGAIN)

```
1946:The Metropolis Algorithm
1947: Simplex Method
1950: Krylov Subspace Method
195 I: The Decompositional Approach to Matrix Computations
1957: The Fortran Optimizing Compiler
1959: QR Algorithm
1962: Quicksort
1965: Fast Fourier Transform
1977: Integer Relation Detection
1987: Fast Multipole Method
```


Dantzig

Neumann

Hestenes Householder

Backus

Hoare

THANKYOU

What will be the top 10 algorithms of this century?

