THE 20TH CENTURY

Alex Townsend Cornell University

THE TOPIOLIST

- **1946: The Metropolis Algorithm**
- **1947: Simplex Method**
- **1950: Krylov Subspace Method**
- **1951:** The Decompositional Approach to Matrix Computations
- **1957: The Fortran Optimizing Compiler**
- 1959: QR Algorithm
- 1962: Quicksort
- **1965: Fast Fourier Transform**
- **1977: Integer Relation Detection**
- 1987: Fast Multipole Method

Hoare

Dantzig von Neumann Hestenes Householder Backus

Greengard

WHAT IS AN ALGORITHM?

Definition:

"An algorithm is a sequence of finite computational steps that transforms an input into an output" [Cormen and Leiserson, 2009]

NUMERICAL ANALYSIS

A definition

"'The study and development of algorithms that use numerical approximation"

How many of the top 10 algorithms are in numerical analysis? Potentially all of them

Floating point arithmetic

Algorithms implemented in floating point arithmetic are studied and developed by numerical analysts

OVERVIEW OFTALK

A top 10 algorithm

How it works?

How do I use it?

Open problem

1959: QR ALGORITHM

The Tacoma Narrows bridge in Nov 1940

Collapsed in 80km/h winds

NUMERICAL SIMULATIONS

HOW DOES IT WORK?

$$A = symmetric$$

for k = 1,2,..
$$A = Q*R$$

$$A = R*Q$$

end

The final diagonal matrix contains all the eigenvalues

Francis

HOW DO I USE IT?

Rootfinding and global optimization

OPEN PROBLEM

Let p(x, y) be a degree (n, n) polynomial. Construct $n \times n$ matrices A, B, and C such that

$$p(x,y) = \det(A + xB + yC).$$

Compare to: $p(x) = \pm \det (A - xI)$

Need it to solve:

$$p(x,y) = q(x,y) = 0$$

1965: THE FAST FOURIER TRANSFORM

"Mozart could listen to music just once and then write it down from memory without any mistakes" [Vernon, 1996]

A simple example:

sound

sound(t) = $3\cos(2\pi 10t + 0.2) + \cos(2\pi 30t - 0.3) + 2\cos(2\pi 40t + 2.4)$

HOW DOES IT WORK?

Given equally spaced samples $f(0/n), f(1/n), \ldots, f((n-1)/n)$, find a_k so that

$$\begin{pmatrix} f(0/n) \\ \vdots \\ f((n-1)/n) \end{pmatrix} = F \begin{pmatrix} a_{-n/2} \\ \vdots \\ a_{n/2-1} \end{pmatrix}, \qquad F_{jk} = e^{2\pi i k(j/n)}$$

F has a sparse factorization. For n = 16 we have

HOW DO I USE IT?

An automatic way to tell us how "complicated" a function is.

OPEN PROBLEM

Let everyone be a Mozart

An example with chords:

Play back

1987: THE FAST MULTIPOLE METHOD

In 4 billion years time...

Rokhlin

Greengard

HOW DO I USE IT?

The SVD gives the best low rank approximations:

Original rank I rank 3 rank 10 rank 50 The low rank format saves computational time and storage costs

OPEN PROBLEM

Why are so many matrices/functions in practice of low rank?

A random matrix is of full rank so "average" matrices are not...

... but, these are of low rank.

Even the American flag is of low rank!

THE TOPIOLIST (AGAIN)

- **1946: The Metropolis Algorithm**
- **1947: Simplex Method**
- **1950: Krylov Subspace Method**
- **1951:** The Decompositional Approach to Matrix Computations
- **1957: The Fortran Optimizing Compiler**
- 1959: QR Algorithm
- 1962: Quicksort
- **1965: Fast Fourier Transform**
- **1977: Integer Relation Detection**
- 1987: Fast Multipole Method

Hoare

Dantzig

Neumann F

Hestenes Householder

Backus

Greengard

THANKYOU

What will be the top 10 algorithms of this century?

Alex Townsend Assistant Professor Math Department townsend@cornell.edu