Numerical solution of ordinary differential equations

Trajectory

$$
\frac{d y}{d t}=f(t, y)
$$

- One of the task for ODE solvers is to find the trajectory starting from initial conditions

True trajectory

- There are infinitely many possible trajectories
- The derivatives "show the correct path"

Note: some images, slides from RN Shorten, D. Leith: https://slideplayer.com/slide/4594068/)

True trajectory

- We can calculate derivatives at all (t, y) points
- It depends on y, too, not only on t !

Euler's method

- Using derivatives at the actual points to estimate solution
- Errors accumulate

Discrete solution: sampling the true trajectory

Smaller stepsize: closer to true solution

Multi-step concept

- Euler, RK4, ... all have the form:

$$
\frac{d y}{d t}=f(t, y)
$$

$$
\hat{y}_{k+1}=K \hat{y}_{k}+g\left(t, \hat{y}_{k}\right)
$$

- Prediction depends only on previous value
- Multi-step methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it. Consequently, multistep methods refer to several previous points and derivative values.

Adams-Bashforth Moulton method

$$
\frac{d y}{d t}=f(t, y)
$$

- The ABM predictor-corrector method is a multi-step method. It is obtained by approximating the integral in the formula

$$
y\left(t_{k+1}\right)-y\left(t_{k}\right)=\int_{t_{k}}^{t_{k}} f(t, y(t)) d t
$$

by an interpolation polynomial of third degree. This polynomial is chosen so that is passes through the points

$$
\left(t_{k-n}, f_{k-n}\right), \ldots, n=0,1,2
$$

This produces an ABM prediction

$$
p\left(t_{k+1}\right)
$$

Adams-Bashforth Moulton method

- Having obtained the prediction, a second polynomial is constructed to fit the points

$$
\left(t_{k-n}, f_{k-n}\right), \ldots, n=0,1,2
$$

- and the point

$$
\left(t_{k+1}, p\left(t_{k+1}\right)\right)
$$

- This polynomial is then integrated to obtain the final prediction at time index $k+1$.

(a) The four nodes for the Adams-Bashforth predictor (extrapolation is used)

(a) The four nodes for the Adams-Moulton corrector (interpolation is used)

Adams-Bashforth Moulton method

- The ABM formula's are:

$$
\begin{gathered}
p\left(t_{k+1}\right)=\hat{y}\left(t_{k}\right)+\frac{h}{24}\left(-9 f_{k-3}+37 f_{k-2}-59 f_{k-1}+55 f_{k}\right) \\
\hat{y}\left(t_{k+1}\right)=\hat{y}\left(t_{k}\right)+\frac{h}{24}\left(9 f_{k-2}-5 f_{k-1}+19 f_{k}+f_{k+1}\right)
\end{gathered}
$$

- The advantage of this technique is that the difference between the predictor and corrector gives an estimate of the truncation error.

ABM: more precise

ABM: but can be instable

- There is a range for step size where the method is instable

Optimal step size

- Runge-Kutta: step size error can be calculated (make one step with $h->y_{1}$ and one with $\left.h / 2->y_{2}\right): \Delta=y_{2}-y_{1}$
- RK4 has 5 -th order error, so if the expected error is Δ_{0}, then the optimal step is

$$
h_{0}=h\left|\frac{\Delta_{0}}{\Delta}\right|^{0.2}
$$

Stability

- Take this simple example:

$$
y^{\prime}=-c y \quad c>0
$$

- Euler "explicit" solution:

$$
y_{n+1}=y_{n}+h y_{n}^{\prime}=(1-c h) y_{n}
$$

- If the step size is "too large" $h>2 / c$ than the solution $\left|y_{n}\right|$ goes to infinity instead of the true solution, 0 .
- Example 2 equations:

$$
u^{\prime}=998 u+1998 v \quad v^{\prime}=-999 u-1999 v
$$

- With boundary condition: $\quad u(0)=1, v(0)=0$
- With this variable transformation:

$$
v=-y+z
$$

$$
u=2 y-z
$$

- the equations take the form:

$$
v=-e^{x}+e^{-1000 x}
$$

$$
u=2 e^{-x}-e^{-1000 x}
$$

- Because of the second terms, stability ($h<2 / c$) would require $h<2 / 1000$. But they are negligibly small, so because of the instability of equations very small steps are required.

Implicit Euler method

- Backwards Euler step:

$$
y_{n+1}=y_{n}+h y_{n+1}^{\prime}
$$

- This is an "implicit equation since y_{n+1} appears on the right hand side, too.
- For our first example the equation can be reordered:

$$
y^{\prime}=-c y \quad c>0 \quad y_{n+1}=\frac{y_{n}}{1+c h}
$$

- This is always stable without any restriction on h.
- The price to be paid for stability: solution of set of (linear) equations in each step.

Instability can be hidden

$$
\begin{gathered}
v=-e^{x}+e^{-1000 x} \\
v=-y+z \\
u^{\prime}=998 u+1998 v \\
v^{\prime}=-999 u-1999 v \\
u(0)=1, v(0)=0 \\
u=2 e^{-x}-e^{-1000 x}
\end{gathered}
$$

