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A variety of phenomena associated with the chaotic behavior of a leaky faucet are displayed and discussed. Interpretations 
are suggested, both in terms of a simple one-dimensional analog simulation, and in terms of a Shannon-based information 
theory, in which a useful descriptive function, the stored information, is calculated from observed streams of data. 

Several years ago R6ssler suggested that the drips 
falling from a leaky faucet might provide a familiar 
example of  a dynamical system capable of  exhibiting 
chaotic behavior [ 1 ]. In the following, we report a 
summary of  our experimental investigations to date 
on such a system. We find substantial evidence for a 
broad range of  dynamical behavior, including period 
doubling, a transition to chaos, hysteresis, and a varie- 
ty of  complex behavior that remains as yet incomplete- 
ly understood. We find that a mathematical model of  
a simple one-dimensional nonlinear oscillator may be 
used to simulate some of  the simpler behavior of  the 
leaky faucet, with good qualitative agreement. We also 
analyze the dynamical behavior in terms of  a function 
we call the stored information, which quantifies our 
ability to predict future system states. Preliminary 
reports of  these investigations have been presented 
previously [2]. Aspects of  this work have also been 
described by two of  us in undergraduate senior theses 
[3]. A lengthy paper providing additional description 
and analysis is available [4]. 

The basic apparatus is shown in fig. 1 * 1. Distilled 
water, kept at a constant pressure head by means of  a 
float valve (a modified Model A Ford carburator) is 
allowed to flow through a needle valve to an orifice. 
Drips from the orifice interrupt the beam of  a he l ium-  
neon laser directed onto a photocell; each of  the re- 
sulting voltage pulses from the photocell is made to 
trigger the sweep of  an oscilloscope, which provides a 

~1 Figure drawn by Chris Shaw. 
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gate pulse. The sequence of  drips thus produces a 
stream of  uniformly shaped pulses, one pulse per drip, 
which is fed to a Z80-based microcomputer ,2 for tim- 
ing, storage and subsequent analysis. The microcom- 
puter also is used to set the needle valve opening, 
through the use of  a stepper motor coupled to the 
valve shaft, allowing the drip rate to be varied between 
about 30 drips per minute (the stable period 1 regime) 
and about 1200 drips per minute (just prior to the 
transition to smooth laminar flow). A typical data set, 
obtained at a single setting of  the needle valve, consists 
of  a few thousand pulses. 

Although a complete description of  the detailed 
behavior of  the drips falling from an orifice requires a 
very large number of  variables, we have chosen to focus 
our attention on a single, easily accessible variable, the 
time interval T n between successive drips - the "drip 
interval". A particularly revealing way to display the 
data from a single data set is to plot a map of  Tn÷ 1 
versus T n. Fig. 2 shows a sequence of  such plots, as the 
valve opening is set to increasingly larger values. 

Simple periodic regimes such as the period-1 and 
period-2 attractors (figs. 2a, 2b) dominate the behavior 
of  the leaky faucet at flow rates below about 200 
drips/min. A period-doubling sequence leading to 
chaos appears to exist; the system is quiet enough to 
observe doubling up to period 4, or, with some imagi- 
nation, period 8. 

At drip rates ranging from about 200 drips/min to 

,2 The microcomputer was constructed by J.P. Crutchfield. 
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Fig. 1. A depiction of the experimental apparatus. 

about 750 drips/min, "fuzzy humps" and "worms" 
predominate (figs. 2d-2f) .  These string-like, one- 
dimensional structures are often interspersed with sim- 
ple periodic structures; fig. 2f shows such a string well 
on its way to becoming a period-3 attractor. 

A wide variety of  more complex structures are 
found at drip rates above 750 drips/min (figs. 2g-2i).  
At this point, the relative scatter of  the measured 
periods, on the order of  a few per cent for the previous 
attractors, increases dramatically to the order of  fifty 
per cent. Accompanying this increase is a shift from 

string-like structures to attractors with apparent di- 
mension greater than one, and a sharp drop in the fre- 
quency of  appearance of  simple periodic attractors. 

Two types of  stability can be qualitatively distin- 
guished. Stability against mechanical shock and randon 
perturbations appears to be equally prevalent over the 
entire range o f  drip rates. However, the stability of  
given attractor structures in valve parameter space (the 
range o f  valve settings over which an attractor remains 
essentially unchanged) is much greater at the high flow 
rates. 
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Fig. 2. Examples of Tn+ 1 versus T n return maps selected from the data. (a)- (c): Periodic behavior. (d)- (f): Low-dimensional 
chaotic behavior. (g)- (i): More complex chaotic behavior, appearing at higher flow rates. All time values are in milliseconds. 

A mathematical model which simulates some of  the 
behavior shown in fig. 2 may be developed as follows: 
A drop hanging from the orifice may oscillate, with a 
frequency that decreases as the drop mass increases. 
At a critical moment,  which is sensitively dependent 
on the drop size and position, the drop will break away, 
setting the subsequent drop into a similar oscillation. 
This one-dimensional "mass-on-a-spring" type of  oscil- 
latory motion may be described by the following equa- 
tion: 

d ( m u ) / d t  = m g  - k y  - bu  , (1) 

wherey is the position of  the forming drop, u = d y / d t  

is its velocity, m is its mass, and g, k and b are constant 
parameters. The mass is made to increase linearly with 

time until the drop position exceeds a preset threshold. 
At this point, its valve is suddenly reduced by an 
amount proportional to the speed of  the drop at that 
moment,  thus simulating the breaking away of  the 
drop. Fig. 3 shows data, in the form of  Tn+ 1 versus T n 

maps, produced by an analog computer on which this 
equation is programmed. The behavior of  the solutions 
to eq. (1) depends on at least four independent param- 
eters (g, k, b and dm/dt), and we have not made a sys- 
tematicaUy exhaustive exploration of  this behavior. 
However it is apparent that there exist regions of  the 
parameter space for which this simple model produces 
solutions whose return maps are remarkably similar, 
in a qualitative sense, to those produced by the faucet 
when the flow rate is low enough (figs. 2 a - 2 0 .  In 
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Fig. 3. Tn+ 1 versus T n return maps for the analog model, illustrating qualitative similarities with some of the attractor structures 
shown in fig. 2. Units of time are arbitrary, and thus are not shown. 

particular we observe period-doubling bifurcations 
and low-dimensional chaotic motion for both systems. 

Examination of  the return maps of  fig. 2 suggests 
the presence of  noisy but well-defined attractors 
underlying the behavior of  the system dynamics. For 
some systems, a description of  the chaotic motion is 
aided by the determination of  a "dimension" for some 
underlying attractor. For the leaky faucet, however, 
calculations of  dimension have proven unsatisfactory, 
owing to the limited dynamic range of  the data, the 
noise scale being almost as large as that of  the promi- 
nent topological features. 

Hence we have developed a new technique, in 
which we compute from a data set the function I(t), 
the stored information. This function, which derives 
from Shannon's information theory [5], may in 
general be estimated from an observed data stream 
produced by any dynamical system using methods 
developed by one of  the authors [4], and serves to 
provide a quantitative description of  the system be- 
havior. It is a measure of predictability in that it speci- 
fies how well we can predict the system's future state, 
given knowledge of  its past behavior. We expect that 
l(t) will be a decreasing function of  time, as we be- 
come less able to predict behavior farther and farther 
into the future. Furthermore, I(t) is an invariant 
under any arbitrary coordinate transformation of  
reasonable smoothness, a property allowing it to be 
estimated from data provided by any set of  conve- 
niently observed system variables. In particular, for 
the dripping faucet system, we may treat the easily 

observed sequence of  drip intervals as a valid data 
stream from which to estimate l(t). 

To be more precise, consider a data set consisting 
of  a few thousand drip interval values T1, T2, T 3 . . . . .  
The estimate of  I ( t )  is somewhat complicated by the 
fact that these drip intervals are embedded in continu- 
ous time, with the result that there may be a signifi- 
cant contribution to I(t) from the phase of the drip 
pulse sequence. In what follows, to aid conceptual 
clarity, we start by ignoring this "phase information", 
to arrive at a function I 1 (t), the stored information 
associated with only the abstracted set of  drip interval 
values. Subsequently we shall modify the calculation 
to include the phase variable. 

We denote by T a short sequence of  a few adjacent 
measured intervals (often only one); we call this the 
history vector. T' represents a single future interval, 
separated by k intervals from the history, where k = 1, 
2, 3 . . . . .  In this context, the stored information (in 
"bits") is given by 

, [ ek ( r ,  r ' )  
I i (k )  = ffek(r, r')  log 2 ~ - - ~ ( - ~ ) ~  dT d r ' .  (2) 

Here Pk(T, T') dTdT'  represents the joint probability 
that the history lies between T and T + dT and that 
the future interval lies between T'  and T' + dT'. 
P(T) dT is the unconditioned probability that the his- 
tory vector lies between T and T + dT, while P(T') dT' 
is the similar probability that the future interval lies 
between T'  and T' + dT'. We obtain an estimate of  
I 1 (k) from a data set through a binning procedure, 
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with the bin size less than the stochastic noise, to 
allow the above integral to be approximated by a sum. 
The relevant probabilities are estimated by counting 
occurrences of  particular history vectors and future 
intervals. In our calculations, we include appropriate 
correction factors to remove bias arising from the bin- 
ning procedure, resulting in a determination o f I  1 (k) 
which is insensitive to bin size over a broad range. If  
the history vector consists o f  only a single interval T, 
then Pk(T, T') is approximately equal to the density 
of  points on a Tn+ k versus T n return map, while P(T) 
and P(T'), which must be identical functions, are sim- 
ply the projections of  the return map point density 
onto each of  the axes. 

Now we proceed to include the additional contri- 
bution to the stored information involving knowledge 
of  the phase. We denote by I(k) the stored information 
which includes that associated with this additional 
phase variable, so that I(k) serves to describe our abil- 
ity to predict not only the magnitude of  the future drip 
intervals, but also the probable times at which future 
drips will occur. I f  the drip intervals are fairly regular, 
that is, if the scatter of  drip interval values is small 
compared with the average drip interval Tar , then the 
appropriate expression for I(k) is given by 

Z(k) -- f f f  Pk(r, S, T') 

[TavPg(T,S,T')] 
Xlog 2 \  ~ , ~  ]dTOSdT', (3) 

where T is the history vector, T' is the future interval 
separated by k intervals from the history, and S is the 
total intervening time between T and T'. Eq. (3) gives 
the stored information I(t) for t = kTav , where k = 1, 
2, 3 . . . . .  With the observation of  only the drip interval 
data, values of  I ( t )  calculated using eq. (3) represent 
lower bounds of  information stored by the actual sys- 
tem. We do not give here complete derivations of  eqs. 
(2) and (3). Further discussion of  their applicability to 
our experimental results will be found in refs. [3,4]. 

There are two useful quantities associated with the 
stored information, which we call the information 
storage capacity and the entropy generation rate. The 
former is simply the maximum value of  I(k), namely 
I(1). In the language of  communication theory, this is 
the "channel rate", or "mutual information" between 
past and future system states [6]. The entropy genera- 

tion rate is simply I (1)  -•(2) ,  which may also be 
thought of  as the initial rate of  loss of  predictability 
as future times are considered. This definition is equiv- 
alent to the Kolmogorov-Sinai entropy of  noiseless, 
deterministic systems [7] in appropriate limits, but 
avoids the difficulties which arise in the definition of  
the deterministic entropy when a noise element is 
present. As with the stored information itself, both 
the information storage capacity and the entropy 
generation rate are geometric invariants. 

Fig. 4 shows examples of  both I 1 (k) and I(k), esti- 
mated as described above, using the data of  the "fuzzy 
hump" of  fig. 2d, which occupies about 5 per cent of  
the drip interval. The stored information I(k), initially 
about 6.8 bits, is seen to decrease, at first more rapid- 
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Fig. 4. Plots of stored information versus time. The time, 
which is expressed in multiplets of the mean drip interval, is 
plotted on a logarithmic scale. Values of the stored informa- 
tion, which are computed from the data set of fig. 2d using 
eqs. (2) and (3), are indicated by the small squares. (a): The 
stored information I(k) includes that associated with the phase 
variable. It decays from its initial value of 6.8 bits toward the 
dashed line, whose slope is -0.5, the expected behavior when 
only phase information is present. (b): Ii(k)includes only the 
information associated with the sequence of drip interval val- 
ues, and decays toward zero as the drip intervals become un- 
correlated. 
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ly, corresponding to the rapid loss of  information as- 
sociated with the chaotic behavior within the hump, 
and then more slowly, as the phase information is also 
lost, eventually decreasing like - l o g  ~ as expected 
for a purely stochastic drip sequence, I 1 (k) shows the 
stored information associated with the chaotic motion 
only, decaying smoothly from about 1.6 bits to zero 
after about 10 drip intervals. Thus we may character- 
ize this attractor as possessing an information storage 
capacity of  about 6.8 bits, of  which about 5.2 bits are 
associated with the phase variable. Furthermore, the 
entropy generation rate is seen to be about 0.8 bits/ 
drip, about half of  which is associated with the phase 
variable. For the period-1 structure of  fig. 2a, the in- 
formation storage capacity, which is associated totally 
with the phase variable, is 8.3 bits, agreeing well with 
the observed (stochastic) scatter of  0.32 per cent of  
the drip interval. Correspondingly, the entropy genera- 
tion rate here is only slightly less than its theoretical 
value of  0.5 bits/drip. As expected, I 1 (k) vanishes for 
this case. On the other hand, for the period-2 regime 
(fig. 2b), I 1 (k) remains at about 1 bit, and the informa- 
tion storage capacity is correspondingly greater. In 
general, for a period-n regime, I 1 (k) = log2(n ) bits. 

An interesting type of  behavior is illustrated in 
figs. 2g, 2h. Attractors of  this general form (the "eagle" 
in local parlance) appear over a fairly wide range of  
flow rates. Here, although the faucet is clearly in a 
chaotic regime, every other drip interval is nearly con- 
stant. This is seen by plotting the Tn+ 2 versus T n map 
for the "even" and "odd"  drops, as shown in fig. 5 for 
the data of  fig. 2g. One set of  points yields a nearly 
periodic structure, while the other gives a chaotic at- 
tractor. 

A consequence of  this behavior is that one bit of  
information is propagated into the indefinite future, 
in the "phase" variable, indicating whether a particular 
drop interval is "even" or "odd".  This is to be con- 
trasted with the data set of  fig. 2h, which, though sim- 
ilar in form, has a small cross-over region visible in the  
lower-left corner of  the figure. This results in a small 
probability of  "tunneling" between the even and odd 
phases, so that there is no long-term stored information. 
We do not yet completely understand the reasons under- 
lying this phenomenon. 

Further experimental work with the leaky faucet 
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Fig. 5. Tn+ 2 versus T n return maps for the even and odd data 
points of fig. 2g. 

system, perhaps taking additional system variables into 
account, is under contemplation. We also contemplate 
extending the application of  information theory to 
other dynamical systems. 
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