Interpolation vs regression

- Interpolation: find a continuous function that passes through all the data points ("join the dots")
- Typical use: change sampling, resolution
- Formula of the fitting function is not interesting
- Fitting, regression: find the best parameters of a known model function, that is closest to data points
- Typical use: find parameters of a physical model
- Sometimes the model is just
 approximation

Interpolation

- Lagrange's formula
- Polynomial goes through all points

Through any two points there is a unique line. Through any three points, a unique quadratic. Et cetera. The interpolating polynomial of degree $N-1$ through the N points $y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right), \ldots, y_{N}=f\left(x_{N}\right)$ is given explicitly by Lagrange's classical formula,

$$
\begin{align*}
P(x)= & \frac{\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{N}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \ldots\left(x_{1}-x_{N}\right)} y_{1}+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right) \ldots\left(x-x_{N}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \ldots\left(x_{2}-x_{N}\right)} y_{2} \\
& +\cdots+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{N-1}\right)}{\left(x_{N}-x_{1}\right)\left(x_{N}-x_{2}\right) \ldots\left(x_{N}-x_{N-1}\right)} y_{N} \tag{3.1.1}
\end{align*}
$$

There are N terms, each a polynomial of degree $N-1$ and each constructed to be zero at all of the x_{i} except one, at which it is constructed to be y_{i}.

Interpolation

- Cubic spline:
- Local: low order polynomial through neighboring points
- Local interpolators join smoothly to each other
- Bi-cubic spline for 2D

Least Squares and Maximum Likelihood

Modern data science

Initial values

$$
\begin{aligned}
& \Lambda=0.7 \\
& \Omega_{\mathrm{m}}=0.3
\end{aligned}
$$

"laws", equations

$$
\boldsymbol{F}=\boldsymbol{G} \frac{\boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}}{\boldsymbol{r}^{2}} \left\lvert\, \begin{aligned}
& R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
\end{aligned}\right.
$$

Goal

- Find a MODEL for measurement/simulation data, that:
- Fits some theory
- Reproduce measurement data
- Can be parametrized
- Parameters may have „physical" meaning
- Displacement/time diagram - linear fit - slope: speed

Example: linear motion: speed

Errors

- Measurements contain errors (in each variables!)
- noise, inaccuracy
- Systematic errors
- outliers
- Hence: the calculated parameters will have errors, too

Least square fit

Given: $\left(x_{i}, y_{i}\right) ; i=1 . . N$ measurement points. Fit some function :

$$
\begin{aligned}
& y(x)=y\left(x ; a_{1}, a_{2}, \ldots, a_{M}\right) \\
& a_{j} \text { parameters, } j=1 . . M
\end{aligned}
$$

Least square fit:

$$
\min _{a_{1} \ldots a_{M}}\left(\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right]^{2}\right)
$$

Take derivatives by $a_{1}, a_{2}, \ldots, a_{M}->$ set of linear equations (!! Also for some nonlin func.)

Least squares

Why not least absolute values, fourth powers, etc?

$$
\begin{aligned}
& \min _{a_{1} \ldots a_{M}}\left(\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right]^{2}\right) \\
& \min \left(\sum_{i=1}^{N}\left|y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right|\right) \\
& a_{1} \ldots a_{M} \\
& \min _{a_{1} \ldots a_{M}}\left(\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right]^{4}\right) \\
& \min _{a_{1} \ldots a_{M}}\left(\sum_{i=1}^{N} \sqrt[8]{\left|y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right|}\right)
\end{aligned}
$$

Least distances?

Why least squares?

- Maximum likelihood estimation
- Least quare gives best parameters, if :
- Errors only in y_{i}
- Errors are normal (Gauss) distributed
- Errors are independent

Cost function

Find optimal parameters, with largest goodness / smallest „cost/energy"

Maximum likelihood explained

Cost function

Finding minimum: in general leads to a nonlinear optimization problem

In special case:
linear set of equations

Maximum likelihood

$$
P \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma}\right)^{2}\right] \Delta y\right\}
$$

Find parameters where P is maximal.
The $\log ()$ func. is monotonuous, so find maximum of $\log (P)$, or minimum of $-\log (\mathrm{P})$

$$
-\log (P)=\left[\sum_{i=1}^{N} \frac{\left[y_{i}-y\left(x_{i}\right)\right]^{2}}{2 \sigma^{2}}\right]-N \log \Delta y
$$

This is Least Squares!

Note

- Regression of a nonlinear function with linear parameters still leads to linear problem (Numerical Recipes 15.4)

$$
y(x)=a_{1}+a_{2} x+a_{3} x^{2}+\cdots+a_{M} x^{M-1}
$$

The general form of this kind of model is

$$
y(x)=\sum_{k=1}^{M} a_{k} X_{k}(x)
$$

$$
\chi^{2}=\sum_{i=1}^{N}\left[\frac{y_{i}-\sum_{k=1}^{M} a_{k} X_{k}\left(x_{i}\right)}{\sigma_{i}}\right]^{2}
$$

The minimum of (15.4.3) occurs where the derivative of χ^{2} with respect to all M parameters a_{k} vanishes. Specializing equation (15.1.7) to the case of the model (15.4.2), this condition yields the M equations

$$
\begin{equation*}
0=\sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}}\left[y_{i}-\sum_{j=1}^{M} a_{j} X_{j}\left(x_{i}\right)\right] X_{k}\left(x_{i}\right) \quad k=1, \ldots, M \tag{15.4.6}
\end{equation*}
$$

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

$$
\begin{equation*}
\sum_{j=1}^{M} \alpha_{k j} a_{j}=\beta_{k} \tag{15.4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k j}=\sum_{i=1}^{N} \frac{X_{j}\left(x_{i}\right) X_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} \quad \text { or equivalently } \quad[\alpha]=\mathbf{A}^{T} \cdot \mathbf{A} \tag{15.4.8}
\end{equation*}
$$

an $M \times M$ matrix, and

$$
\begin{equation*}
\beta_{k}=\sum_{i=1}^{N} \frac{y_{i} X_{k}\left(x_{i}\right)}{\sigma_{i}^{2}} \quad \text { or equivalently } \quad[\beta]=\mathbf{A}^{T} \cdot \mathbf{b} \tag{15.4.9}
\end{equation*}
$$

Complex example: cosmology

