Finding roots of nonlinear
eguations

From Press et al. Numerical Recipes, Chapter 9



Easy and hard cases

—
—

X1

(c)

(a)

(d)

(b)

Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated root = bracketed
by two points a and b at which the function has opposite signs; (b) illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (¢) i1s a
pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.



Bisection method

Evaluate the function at the interval’s midpoint and examine its sign. Use the
midpoint to replace whichever limit has the same sign. After each iteration the
bounds containing the root decrease by a factor of two. If after n iterations the root
18 known to be within an interval of size €,,, then after the next iteration it will be
bracketed within an interval of size

€Eni1 =€n_/2 (912)



Secant method
 Not bracketed
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Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in

the order that they are used.
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False position method (“Regula falsi”)
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Figure 9.2.2. False position method. Interpolation lines (dashed) are drawn through the most recent

points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.



Slow convergence
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Figure 9.2.3. Example where both the secant and false position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.



Newton-Raphson method -

* Pros: 2 [ ()

€i+1 = —¢€; | .
e Faster 2f'(x)

* Can be generalized to
higher dimensions
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* Cons:
* Not bracketed

* Need derivative

Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.



Possible problematic cases

* Solution: combine with bracketing

S
f(x)




Newton-Raphson higher dimensions (set of nonlin. Egs.)
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Figure 9.6.1.  Solution of two nonlinear equations in two unknowns. Solid curves refer to f(x,v),
dashed curves to g(x,y). Each equation divides the (z,y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown,



