With layers

Slides from Frederick H. Willeboordse

The distance between points on opposite end of the bar.

The distance between nearby points. Sensitive Dependence!

Mathematically

The Tent Map

$$T(x) = \begin{cases} ax & \text{if } x \le 0.5 \\ -ax + a & \text{if } x > 0.5 \end{cases}$$

4

https://en.wikipedia.org/wiki/Horseshoe map

Stretch and Fold

In the logistic map

The same as stretch and fold with the stretch being nonlinear.

A key motivation for the study of chaos is the notion of *universality*. In this context it means that a certain feature or a certain constant is applicable to a whole range of systems which are said to be a *class of systems*.

It is important to note that universality in this sense does not mean everywhere in all conceivable cases.

The most well known universal constant in chaos theory is the *Feigenbaum constant*. It applies to all single hump functions.

Universality

Some Examples

Experimental verifications of the Feigenbaum constant.

Experiment	Number of period doublings	δ	Authors
Hydrodynamic			
water	4	43(8)	Giglio et al. (1981)
mercury	4	4.4 (1)	Libchaber et al. (1982)
Electronic			
diode	4	4.5 (6)	Linsay (1981)
diode	5	4.3 (1)	Testa et al. (1982)
transistor	4	4.7 (3)	Arecchi and Lisi (1982)
Josephson simul.	3	4.5 (3)	Yeh and Kao (1982)

The chaotic behavior of the leaky faucet <u>P.MartienS.C.PopeP.L.ScottR.S.Shaw</u> (1985)

Chaos in a dripping faucet

H N Nunez Yepez, A L Salas Brito, C A Vargas and L A Vicente European Journal of Physics, Volume 10, Number 2 (1989)

Chaos in a dripping faucet

Figure 3. Schematic diagram of the experimental set-up. We use a float valve (marked 'level control' in the diagram) to maintain the water level in an upper reservoir (not shown).

Figure 4. The interface is a single 74LS00 chip. The connections to the microcomputer user's port are shown.

104 H N Núñez Yépez et al

Figure 5. Example of the experimental results shown as T_{n+1} (vertical axes) versus T_n (horizontal axes) graphs redrawn from the printout of our data. Periodic behaviour, (a)-(c); complex chaotic behaviour, (d)-(f). All values of time are in milliseconds.