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1 Introduction

The Lotka-Volterra model (LVM) is describing predator-prey like interactions and can be

used to describe the behaviour of biological systems and neural networks. It can even be used

more widely, if modi�cations are made in order to make it more realistic, more powerful to give

solutions to some problems occurring in Physics or in other �elds of science.

The motivation behind this project is to examine the basic LVM and its modi�cations

until it gives satisfactory results and meet our criteria, because - as said before - it serves

as a theoretical approach to various problems. Hence I would like to investigate the LVM in

this work. I will also attempt to show where it can be used in plasma physics to describe a

phenomena of turbulent �ows.

To turn the previous words into coins the simulation and evaluation will be made step-by-

step with the help of the following book [1] and answers, solutions to the arising questions will

be found.

2 Lotka-Volterra models

To get started, the basic quantities should be introduced. Let

p(t) = prey density, P (t) = predator density. (1)

These notations will be used throughout this work and a 4th-order Runge-Kutta explicit

solver will be applied to get the results. Each run will cover the time interval between 0 and

500 and overall 105 time steps will be made.

2.1 LVM-I

2.1.1 Background

We assume in the absence of interactions, that the prey population p grows at a per-capita

rate of a, which would lead to exponential growth:

dp(t)

dt
= ap,→ p(t) = p(0)eat. (2)

Though, in reality it will not occur, because predators P will be able to eat more prey as

p increase. The interaction rate between prey and predators can be introduced the following

way, since it needs both to be present:
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Interaction rate = bpP, (3)

where b is describing the strength of the interaction.

From this we can get the �rst, most basic equation for the prey population:

dp(t)

dt
= ap(t)− bp(t)P (t), (LVM-I for prey). (4)

To get an equation for the predator population, we need to consider two things. First,

predators will eat themselves if no prey present, therefore it is wise to introduce:

dP (t)

dt

∣∣∣∣
competition

= −mP (t), (5)

where m is the per-capita mortality rate. The second consideration is, once a predator caught

a prey, it has an e�ciency (ε) to convert it into food. Therefore:

dP (t)

dt
= εbp(t)P (t)−mP (t), (LVM-I for predator). (6)

In this simple model, the equilibrium values for the populations can be found easily and

depend on the parameters:

p(t) =
m

εb
, and P (t) =

a

b
. (7)

2.1.2 Results

To validate the obtained results, the same initial values and parameters were used as written

in [1] (see Table 1).

Model a b ε m

LVM-I 0.2 0.1 1.0 0.1

Table 1: Parameters used in the simulation.
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Figure 1: Left: changes in the prey population (blue) and the predator population (black),

when initiated with p(0) = 2.0 and P (0) = 1.3. Right: phase-space plot using three di�erent

initial conditions for the populations (results marked with di�erent colors for each).

It can be seen, that the amplitudes are the same, so that the prey and predator populations

minimum and maximum values do not change in time and the minimum prey-maximum preda-

tor populations (and vica versa) are not occuring at the same time. The latter can be explained

with the fact, that the growing rate in the prey and the declining rate in the predator popu-

lations are exponential, while the interaction rate is proportional to the joint probability. The

exponentials are causing the shift, since these grow/decay over a speci�c time
(
∝ 1

a

)
/
(
∝ 1

m

)
and not responding immediately to the changes.

One can also see from the phase-space plot, that the amplitudes strongly depends on the

given initial values. Therefore it is not a very realistic model, we need further modi�cations.

The equilibrium state can be calculated with (7) and we can get the �gure we expect (with

the previous initial conditions):
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Figure 2: Equilibrium state, prey (blue), predator (black).

2.2 LVM-II

2.2.1 Background

The �rst step for modifying the previously presented LV-I is to introduce a maximum limit

(K) for the prey population. We should take into account, that the supplies for the preys are

also limited, so the exponential growth is to prevent. The governing equations in this case:

dp(t)

dt
= ap(t)

[
1− p(t)

K

]
− bp(t)P (t), (LVM-II for prey), (8)

where K is an upper limit, so the carrying capacity for the prey population.

dP (t)

dt
= εbp(t)P (t)−mP (t), (LVM-II for predator). (9)

The equilibrium values can be also given here, but it will not be as simple as before:

p(t) =
m

εb
, (10)

P (t) =
a

b

(
1− p(t)

K

)
=

a

b

(
1− m

εb
· 1
K

)
. (11)

So the equilibrium of the prey population (10) will determine the equilibrium of the predator

population (11). One can also see, that this equilibrium will depend on the prey carrying

capacity as a function f
(

1
K

)
.
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2.2.2 Results

To validate the obtained results, the same initial values and parameters were used as written

in [1] (see Table 2).

Model a b ε m K

LVM-II 0.2 0.1 1.0 0.1 20

Table 2: Parameters used in the simulation.

Figure 3: Left: changes in the prey population (blue line or dashed red line) and the predator

population (black line or cyan dashed line), when initiated with p(0) = 2.0 and P (0) = 1.3 or

p(0) = 0.5 and P (0) = 0.5. Right: phase-space plot using the previous two di�erent initial

conditions, but the same parameters (table 2) for the populations.

Evaluating �gure 3 we can conclude, that running with the same parameters, but starting

from di�erent initial conditions will go towards the same equilibrium. So it does not depend on

the starting populations, only on the parameters shown in table 2. It meets our expectations,

that we consider, when interpreting (10) and (11).
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The equilibrium state can be also calculated here for given parameters (see table 2) and we

can get the �gure we expect:

Figure 4: Equilibrium state, prey (blue), predator (black).
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2.3 LVM-III

2.3.1 Background

We saw in LVM-II, that we get a much better model introducing the prey carrying capacity

K, but still we are not satis�ed. Further modi�cations are needed. Let us consider, that a

predator needs time for searching the prey (tsearch) and eating it(thandling), because it does not

happen immediately. It is also wise to set a predator carrying capacity proportional to p(t) as:

kp(t). After these modi�cations the two equations describing the system:

dp(t)

dt
= ap(t)

[
1− p(t)

K

]
− bp(t)P (t)

1 + bp(t)th
, (LVM-III for prey), (12)

where th is the handling time.

dP (t)

dt
= mP (t)

[
1− P (t)

kp(t)

]
, (LVM-III for predator). (13)

2.3.2 Results

To validate the obtained results, the same initial values and parameters were used as written

in [1] and the th is set to hundred times the time step of the Runge-Kutta solver. (see Table

3).

Model a b m K k th

LVM-III 0.2 0.1 0.1 500 0.2 0.5

Table 3: Parameters used in the simulation.

We can observe the existence of three dynamic regimes as a function of the interaction rate

(b) between predator and prey:

• small b: no oscillations, no overdamping,

• medium b: damped oscillations, which are converging to a stable equilibrium,

• large b: limit cycle.
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Figure 5: Case: b = 0.005 (small). Left: changes in the prey population (blue line) and

the predator population (black line), when initiated with p(0) = 2.0 and P (0) = 1.3. Right:

phase-space plot using the previous initial conditions.

Figure 6: Case: b = 0.036 (medium). Left: changes in the prey population (blue line) and

the predator population (black line), when initiated with p(0) = 2.0 and P (0) = 1.3. Right:

phase-space plot using the previous initial conditions.
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Figure 7: Case: b = 5.0 (large). Left: changes in the prey population (blue line) and the

predator population (black line), when initiated with p(0) = 2.0 and P (0) = 1.3. Right:

phase-space plot using the previous initial conditions.

The transition can also be seen at a speci�c parameter (b = 0.219) with the same initial

conditions and parameters as before (except b, which is changing).

Figure 8: Case: b = 0.0218. Before transition.
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Figure 9: Case: b = 0.0219. At the transition.

Figure 10: Case: b = 0.0220. After the transition.

We can conclude here, that this model is providing satisfactory results: the prey popula-

tion can be kept from getting too large and from �uctuating widely and the changes in the

parameters can lead to �uctuations or to nearly vanishing predators.
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2.4 LVM two predators one prey

2.4.1 Background

As an additional examination it is interesting, what happens, when two predators share the

same prey. The equations using LVM-II:

dp(t)

dt
= ap(t)

[
1− p(t)

K

]
− [b1P1(t) + b2P2(t)] p(t), (LVM-2pred for prey), (14)

dP1(t)

dt
= ε1b1P1(t)p(t)−m1P1(t), (LVM-2pred for �rst predator), (15)

dP2(t)

dt
= ε2b2P2(t)p(t)−m2P2(t), (LVM-2pred for second predator). (16)

where the same notations are used to all parameters and the indices are introduced to let us

set di�erent skills for each predator.

2.4.2 Results

The parameter tables:

Model a b1 ε1 m1 K

LVM-2pred 0.2 0.1 1.0 0.1 1.7

Table 4: Parameters used in the simulation for the �rst predator.

Model a b1 ε1 m1 K

LVM-2pred 0.2 0.2 2.0 0.1 1.7

Table 5: Parameters used in the simulation for the second predator.

So the second predator is twice as e�ective as the �rst one in hunting and converting the

prey into food.
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Figure 11: Changes in the prey population (black line), the �rst predator population (blue

dashed line) and the second predator population (green dashed line), when initiated with p(0) =

1.7 and P1(0) = 1.7 and P2(0) = 1.0.

Figure 12: Phase-space plot. On the left with the �rst predator, on the right with the second

one initiated with p(0) = 1.7 and P1(0) = 1.7 and P2(0) = 1.0.

Our assumption is proved. We can see, that the less-skilled predator die out, while the

other one's population gets in equilibrium with the prey population. The results of an other

run shows, that both predator can coexist if they have same hunting skills (b1 = b2 and ε1 = ε2).
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3 Application in plasma physics

In this section I would like to brie�y introduce an application in fusion plasma physics.

There exists a theory to describe the behaviour of radially localized, sheared turbulent �ows,

which modi�es the particle transport from inside the Tokamak device to the edges. This can

cause - according to the theory - the L-H-transitions.1

If we consider, that many small-scale turbulent �ows are created in a two-dimensional plane

(formed by magnetic e�ects), then due to the inverse energy-cascade these small-scale structures

can sustain a larger-scale sheared zonal �ow. So those turbulent structures are responsible for

the existence of this zonal �ow.

Here we can make an identi�cation of these structures: the small-scale turbulent �ows are

playing the role of the prey population, while the larger-scale sheared zonal �ow is the predator,

that uses the latter one as a supply.2

If we set the power supply (external heat, current) in a Tokamak a way, that it is close

to the transition threshold, we can measure phase transitions from L-mode to H-mode. In

between there are the Limit-Cycle-Oscillations (LCO). (see �gure 13) We could also look for

similar properties, compare this and what we saw in LVM-III varying b.

Figure 13: Measured pro�les at Compass, Prague, SUMTRAIC2017, Task4.

1The plasma in a Tokamak device can be in low-con�nement L or in high-con�nement H mode. This means,

that in those modes the plasma is less or more con�ned.
2This approach is rather only a brief demonstration. For more details read [2].

14



4 Conclusion

The numerical simulations with the post-processing are done in python and the results are

shared with this work. One can see, that we got the expected results.
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