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1 Motivation

I have implemented a 4th and 10th order symplectic integration composition method, and a "reg-
ular" 4th order Runge-Kutta method in Python 3 in order to investigate the Fermi-Pasta-Ulam
problem. My �rst motivation was to get to know geometrical integrators better, because these
methods are widely used in celestial dynamincs and N-body dynamics (e.g. molecular dynamics) [1].
I chose to investigate the FPU-problem because I wanted to reproduce the famous super-recurrence
phenomenon observed in this system [2].

2 The FPU-problem

As the �rst computers appeared in the 1940s, they were used for investigating physical systems
numerically. In the early 1950s Fermi and Ulam chose to integrate the weakly nonlinear, �xed-end,
one dimensional chain of N − 1 moving mass points having the Hamiltonian [3]:
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where pk, qk is the momentum/displacement from equilibrium position of the kth particle, and λ
is a small number. This type of Hamiltonian is also called α-mode [4]. In my simulations I used
N = 32.

Figure 1: Schematic �gure showing a linear chain of N particles. We denote the displacements from
the equilibrium positions by qk instead of xk for the sake of transparency

The simulation was to serve as an assertion of ergodicity and equipartition of energy, because it
was believed that the small anharmonicity in the system would lead to equipartition between the
degrees of freedom. That is why it was straightforward to introduce normal mode coordinates the
following way [2]:
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With the above transformation we get for the transformed Hamiltonian the following[4]
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where ωk = 2 sin
(
kπ
2N

)
is the frequency of the kth mode and the dot denotes time derivative. The

constants Cklm will not be used, therefore we do not need them. During the historical simulation
the energy of the �rst few modes were investigated, given by:
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The initial conditions were given by (k = 1...31):

q0
k = sin

(
kπ
N

)
,

p0
k = 0.

(5)

In other words, only the �rst mode was excited. (I used the same initial conditions). The results
were a surprise: After a certain amount of time the energy began to return to the �rst mode
only, contradicting the equipartition of energy. This phenomenon, also called 'super-recurrence
phenomenon' is the subject of this project. For the transformation into normal coordinates, Fast
Fourier Transform (FFT) was applied.

3 Theoretical background of the applied numerical method

Let us denote the coordinates of phase space by p := (p1, p2 · · · , pN)T , the particle momenta and
q := (q1, q2 · · · , qN)T , the particle coordinates. Given a Hamiltonian, H, the equations of motion
are the following:

d

dt
q = ∇pH (6)

d

dt
p = −∇qH. (7)

For a numerical integrator, let us de�ne a so-called �ow map, Ψ, which is a R2N → R2N mapping,
where N is the number of particles. If, after a timestep Deltat, the new coordinates are q′ and p′,
the e�ect of Ψ can be shown as follows:(

p′

q′

)
= Ψ∆t

(
p
q

)
. (8)

We call such a �ow map symplectic, if it preserves the following 2-form:

Ω = dq ∧ dp, (9)

where ∧ denotes the usual wedge-product in di�erential geometry [5]. The above two-form can
be thought of as the volume form in phase space, so in other words symplecticness means � after
Liouville's theorem [6] � the conservation of the Hamiltonian. It is extremely useful to construct
such integrators, as in physics conservation of energy is crucial.
Let us suppose, that the Hamiltonian of the system can be decomposed the following way:

H = H1 +H2 + · · ·+Hk, (10)

for which the following statement holds:

{Hi, Hj} = 0, (11)

where {A,B} means the Poisson bracket of A and B [6]. Let us assume moreover, that the Hamil-
tonian can be decomposed the following way:

H(p,q) = T (p) + V (q), (12)

as it is certainly satis�ed in our case. It can be shown ([1]) that with these requirements a symmetric
symplectic integrator can be obtained the following way:

Ψ∆t = Φcs∆t,V ◦ Φds∆t,T · · · ◦ Φc1∆t,V ◦ Φd1∆t,T ◦ Φc0∆t,V , (13)
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where Φ is the numerical integrator of T or V (they are integrable due to the decomposition de�ned
above), ck, dl, k = 0, 1 · · · s; l = 1, 2 · · · s are optimally de�ned constants with the constraint of∑

k ck =
∑

k dk = 1, whereas s is the order of the integrator. I used two di�erent integrators,
one of order 4, and another of order 10. The corresponding constants can be found in [7, 8],
respectively. Function composition is denoted by ◦, hence the name composition method for this
kind of symplectic integration. For an excessive description see e.g. [1].

4 Results

4.1 The phenomenon of "super recurrence"

My primer aim was to reproduce the famous super recurrence phenomenon. For this I have made
three di�erent simulations, using di�erent numerical methods: 4th order Runge-Kutta, a 4th order
and a 10th order simplectic integration composition method. I simulated the �rst three harmonic
modes for 160 periods. One period lasts for an amount of time obtained from the following equation
[2]

T =
2π

ω1

, (14)

where
ω1 = 2 sin

( π

2N

)
. (15)

The task was to reproduce the following �gure (taken from [2]):

Figure 2: Harmonic energy modes in the FPU problem, taken from literature.

The energy units were multiplied by a factor for transparency. I did not take this way, that is
ehy on the following �gures the energy values may di�er. Nevertheless, a quantitative comparison
is totally possible. The time units were the same. The method whose results was the closest to the
�gure above was the RK4.

As it can be seen, we have almost perfect agreement regarding the �rst three harmonic modes.
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(a) Harmonic energy modes from literature (b) Harmonic energy modes obtained by RK4

Figure 3: Comparison of RK4-results with literature data

(a) Harmonic energy modes obtained by SI4 (b) Harmonic energy modes obtained by SI10

Figure 4: Comparison of simplectic integration methods of di�erent order

In the case of symplectic integration we can see that although the same results are obtained, yet
with a greater variance. This is the price of symplecticness: In order for the numerical method to
be symplectic, i.e. preserving the Hamiltonian, it must have a bigger "error", although decreasing
with higher order.

4.2 Investigating the role of λ

I have investigated how the harmonic energy (Ehar) depends on the λ coupling parameter. Heuris-
tically, one would argue that the smaller value λ has, the more closer Ehar gets to a constant value
(although it will not be exactly constant). However by increasing λ, the harmonic energy will be
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more and more 'fragmented' in a sense that it may show bigger di�erences in time. For this I have
made simulations investigating four di�erent values for λ. The results can be seen on �gure 5.

Figure 5: The harmonic energy in case of di�erent λ-parameters

We can draw the conclusion, that at small values of λ the perturbation can be neglected and
the harmonic energy hardly changes (on the scale of the λ = 3 case). By increasing the coupling
parameter, the harmonic energy becomes more and more "chaotic". For a deeper insight see e.g.
[4].

4.3 Comparison of numerical accuracy of the used numerical methods

I have investigated the numerical accuracy of the symplectic integration method I implemented for
the solution of the above described problem, and I have also made a comparison between this and
the fourth-order Runge-Kutta method. The basis of comparison was the numerical accuracy which
was estimated by the Hamiltonian of the problem. As H does not explicitly depend on time itself,
its value ought to remain constant hence the well-known relation from analytical mechanics [6]:

dH

dt
= {H,H}+

∂H

∂t
=
∂H

∂t
, (16)

which is zero in our case. In spite of this, due to numerical inaccuracy the Hamiltonian is not
constant which gives an approximation for the error of the given numerical method. I de�ned the
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error as follows:

Error =
(Hmax −Hmin)

Hmax

%. (17)

With this de�nition I have made simulations with di�erent time steps (∆t) both for the symplectic
integrator (SI-CM) and the Runge-Kutta (RK4). The results can be seen on the following �gure:

Figure 6: Comparison of numerical errors in case of di�erent timesteps

We can conclude that the symplectic integration method is more precise in most cases (in case of
∆t=10−3 s it is approximately the same). In case of smaller timesteps no huge di�erence is observed
although it would be indicated by the higher order of the SI-method. This is due to the fact that
these simulations runned for a relatively short time (≈ 20T ). In this region the RK4-method is still
acceptable as far as energy conservation is concerned. Had the simulations runned longer, a more
noticeable di�erence would have been observed because of the non-symplecticness of RK4.

5 Discussion

A simplectic integration method and the famous RK4-method was implemented in Python 3 and
compared in terms of numerical accuracy and e�ciency by investigating the FPU-problem. The
super-recurrence phenomenon has been observed, and the role of the coupling parameter has been
investigated. We can conclude that although the RK4 is not symplectic, for this particular problem,
most probably due to the short period of simulated time, it is more e�cient than the symplectic
integration method. It should be noted however, that had we simulated for a much longer period
of time, the advantages of the symplectc method would have clearly been shown, i.e. it conserves
the Hamiltonian, whereas in the case of "regular" RK4 for longer times energy begins to "slip out"
from the system [1].
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