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1 Introduction

In the theory of complex dynamics, the Julia set is the set of unstable states of the dynamic system or in

other words, the Julia set consists of points of phase space such that an arbitrarily small perturbation can

cause drastic changes in the time evolution of the points. The time evolution of the dynamical system can

describe by a function which maps a point of the phase space back into the phase space in every time step.

Based on the above we can say, the behaviour of the time evolution function on the Julia set is "chaotic". An

interesting property of the Julia set is the self-similarity, which means the Julia set is exactly or approximately

similar to a part of itself. The self-similarity is a typical property of fractals so we can look at the Julia set

like a fractal and measure the dimension of it.

Motivation

A simple quantum information protocol, wherein each step one carries out postselection on part of the qubits

resulting in an effective nonlinear time evolution for the remaining qubits. This kind of iterated protocols

can describe as a complex dynamic system. Where the time evolution function can be derived from the

transformations on the qubits. By the study of the properties of the function, we get information about the

dynamical properties of the protocol.

2 Description of the problem and theoretical background

Our protocol is built up from a three-qubit gate (GCNOT ), measurement, postelection, and a general quantum

gate (Up), each of these can be represented with an operator on the Hilbert-space of states of qubits. The first

gate is a CNOT (Controlled NOT) gate, which acts on three qubits and entangles this. The measurement

and postselection follows the CNOT gate. We measure two qubits and keep the third qubit if we observe the

first qubits in the expected state. In the last step, we use a "tunable" quantum gate on the remaining qubit.

The next figure shows one step of the protocol.

Figure 1: Quantum circuit of the protocol. The figure shows the gates which make up the protocol. Under

each part of the circuit are the state of the qubit.
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In Rieamann representation the state of a qubit can be given by a single complex variable

N · (|0〉+ z |1〉) z ∈ Ĉ , (2.1)

where N = 1/
√
1 + z2. The transformation of the state can describe with a complex function

T̂ (N · (|0〉+ z |1〉)) = N ′ · (|0〉+ z′ |1〉)⇒ z′ = fp(z) =
p+ z3

1− pz3
. (2.2)

In this approach the protocol can be described as a complex dynamic system. For the complex dynamics the

phase space can be the Riemann sphere
(
Ĉ
)
, the states of the system are represented by a complex number,

and the time evolution function map the Riemann sphere onto itself: f : Ĉ → Ĉ. In the case of discrete-time,

the evolution of a state z0 ∈ Ĉ can be described by a difference equation

zn+1 = f(zn) ⇒ z1 = f(z0) . (2.3)

The state after many time steps can be determined by the iteration of the function

zn = (f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
n times

= f◦n(z0) . (2.4)

2.1 Calculation of the Julia set

The Julia set of a function contains the unstable points of the iterated function system. More formally we

can say that the Julia set is the closure of the set of repelling periodic points. In this project, I use two

algorithms to calculate the Julia set of the function. The two algorithms are two different approaches to the

problem and use different properties of the Julia set.

Backward iteration

The iteration of the inverse function is a well-known method to determine the Julia set. The base idea behind

this algorithm is the following: The Julia set contains the repelling points of the function, thus we can not

find this through iteration of function. If we start to back iterate the function, what is to say we start to

iterate inverse of the function then repelling points become attractive points. The repelling periodic points

of the function are the attractive periodic points of the inverse function. So if we found the attractive points

and their basin of attraction for the inverse function then we found the Julia set of the direct function. But

it is not this simple, because the studied function is a fraction of third order polynomials, so it has three

inverse functions. Each three inverse can be calculated, the difference between their value at the same point

is in the argument of the results. The problem is the following: during the iteration in each step the number

of the points triples, which means if we start with one point, after 15 steps we have
∑15

i=0 3
i = 21523360

points, therefore we can not make more steps, but to find points from every area of the Julia set need to do.

The solution is the random choice between the inverses in each step. In this way, we use every combination

of inverses, but in every step we have just one new point. The next property of the Julia set guarantee, that

with this method we can find every point of the Julia set: If z0 ∈ J(f), then the set off all iterated pre-images

{z : f◦n = z0 for some n ≥ 0} is everywhere dense in J(f). ([5]) That means, if we start with any z0 ∈ J(f)

and compute all pre-images f(z1) = z0 , then compute all pre-images f(z2) = z1, and so on, thus eventually

coming arbitrarily close to every point of J(f).
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I made my own implementation of this method in python. The script first calculates the repelling fixed

points of the function, because these are in the Julia set, thus are good options as starting points. The

number of these can be 2 or 4 depending on the parameter of the function: s ∈ [2, 4]. The fixed points can

calculate as the roots of the equation:

pz4 + z3 − z + p = 0 . (2.5)

I solve this by computing the eigenvalue of the companion matrix of the polynomial
0 0 0 −p

p̄

1 0 0 1
p̄

0 1 0 0

0 0 1 − 1
p̄

u = λu (2.6)

/ It is easy with the functions of NumPy. Then I determined the multiplier, which is the derivative of the

function in the case of fixed points. If its multipliers absolute value is higher than 1, then it is repelling.

After that start to iterate the inverse functions.

f(z) =
p+ z3

1− pz3
⇒
(
f−1

)3
=

z − 1

pz − 1
= r · exp(iθ)

f−1
1 = 3

√
r exp

(
i
θ

3

)
f−1

2 = 3
√
r exp

(
i
θ

3

)
exp

(
2π

3i

)
f−1

3 = 3
√
r exp

(
i
θ

3

)
exp

(
4π

3
i

) (2.7)

Every step chooses randomly between the pre-images. Practically choose between the cube-roots. Is a

different choice for every branch of back-iteration. After n steps, we get s series with length n, which are the

points of the Julia set.

The advantage of this method is that does not need too many resources. The disadvantage we can’t

analyze a separate part of the plane.

Forward iteration

The base of the second algorithm is another property of the Julia set. The attractive periodic points of the

function and their basin of attraction are in the Fatou set, which is the complement of the Julia set. That

means if we check the convergence of the points of the complex plane we can compute the elements of the

Fatou and the Julia set. I made a program that implements this method. First, selects a range from the

complex plane, and discretizations this with a given resolution. The points of the plane are stored as an

array. Then starts to iterate the function in every point. After m iterations, searches the periodicity of the

points during m/2 iterations, thus determines the non-convergence points. To use this algorithm we need

more resources because must work with a large array, but we can study just one part of the plane, thus the

resolution becomes higher. It is not a problem to look to just a part of the Julia set because the whole set

and a part of it have the same box-counting dimension, as a result of the self-similarity of the Julia set.

2.2 Estimating the box-counting dimension

The measure of the fractal dimension is the Hausdorff dimension, we can say it is the measure of the roughness

of fractal. The Minkowski dimension (or box-counting dimension) is another way to determining the fractal

dimension of a set. It is similar to the Hausdorff dimension but much easier to calculate. Luckily the two
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measures of the fractal dimension are the same in the case of the Julia set. We know the Hausdorff dimension

of the Julia set of our function is generally between 1 and 2, but it can exist some extreme case when it is

higher.

The method which I use for estimating is based on an interesting concept of the dimension of the objects.

Imagine a cube in 3D. We cut it up to eight equal parts. The small cube’s side length will be half of the side

length of the original cube, but the volume of the new cubes will be one-eighth of the volume of the original

cube. So it means when we scale the side length with a factor then the volume is scale by that factor raised

to the third power. It is a general idea, and it is easy to see that in 2D the power of the scale is 2, and in 1D

it is 1.

L′ = sL⇒ V ′ = sDV , (2.8)

where D is the dimension. The assumption is that the relationship is true for objects with fraction dimensions

too, namely for the fractals. I used this idea to compute the box-counting dimension of the fractals. The

method for calculating the fractal dimension is relatively easy. To compute the dimension for a fractal we

put a grid on the plane of the fractal and count how many boxes are required to cover the set. After that,

we make the grid finer, which is equivalent to scaling up the fractal, and count again the number of required

boxes. We continue this process and watching the changing of the number of boxes.

(a) (b)

Figure 2: Illustration of the box-counting. The black object is the Julia set, and the colored squares are the

boxes that need to cover it.

Based on the above the relationship between the number of boxes and the scaling factor is exponential

N(s) = csd , (2.9)

where the d is the dimension. We can express the value of the dimension. First take the logarithm of both

sides

log(N) = log
(
csd
)
= log(c) + d log(s) . (2.10)

Then the d is

d =
log(N)

log(s)
− 1

log(s)
. (2.11)

6



Because scaling up the object is equal to scaling down the grid, we can use the scale factor (s′) of the grid,

that is the inverse of the s. Whit this the d is the following:

log(N) = log
(
c/sd

)
= log(c)− d log(s) ⇒ d = − (N)

log(s)
− 1

log(s)
. (2.12)

In the numerical calculation, I determine the d with linear regression to thelog(N)− log(s) data pairs.

I made a program to convert the points of the Julia set to an array and calculate the number of boxes in

case of different scales. The program stores a range from the complex plane as a square array. The indexes

of an element indicate the value of the associated point

(k, l)→ z = x+ yi = k · xmax − xmin

n
+ l · ymax − ymin

n
i , (2.13)

where [xmin, xmax]× [ymin, ymax] is the range, n is the shape of the array. The value of the elements of the

array is 1 or 0 depending on the shape of the Julia set. If the associated point is in the Julia set then the

element is 1, else it is 0. The program chose values of the log(s) between two bounders -which are input

parameters- uniformly. I use a modified histogram algorithm, this calculates the bin size from the scale factor

and the shape of the array. Then calculates the number of the filled bins.

Julia set Borders of boxes Boxes Number of boxes



0 1 1 0 0 0 0 0

0 0 0 1 0 0 1 0

1 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0

0 1 0 0 0 1 0 1

0 1 0 0 0 0 1 0

0 0 0 0 1 0 1 0





0 1 1 0 0 0 0 0

0 0 0 1 0 0 1 0

1 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0

0 1 0 0 0 1 0 1

0 1 0 0 0 0 1 0

0 0 0 0 1 0 1 0




1 1 0 1

1 0 1 0

1 1 1 1

1 0 1 1

 12

Table 1: The illustration of the counting of the numbers of the boxes.

The last step is the linear regression on data points, and the absolute value of the slope of the line will be

the dimension of the fractal. The scripts that I use for numerical calculation is being attached to the report.

I used the NumPy, Scipy, and Matplotlib package of python.
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3 Presentation of results

The main results of my project is a program that calculates the Julia set of the function and estimates

its box-counting dimension. With this program, I study the shape of the Julia set and the box-counting

dimension depends on the p parameter. In contrast with the quadratic case, the dynamics of the third-order

rational function were not examined.

3.1 Self-similarity

First I look to the Julia set of function with the parameter p = i. This is a nice example because of the

structure of the Julia set. We can check the self-similarity of the Julia set, calculate the set and estimate the

dimensions of different parts of it.

(a) Frontward iteration (b) Backward iteration

Figure 3: The Julia set of the function fi =
z3 + i

1 + iz3
.

Fort the study of self-similarity I use the forward iteration algorithm because that can look just a part

of the Julia set with the same resolution of the plane. I used the following range of the complex plane:

[−2, 2] × [−2, 2], [0, 2] × [0, 2], [0.5, 1.7] × [0.5, 1.7], [0.8, 1.5] × [0.8, 1.5]. The corresponding box-counting

dimensions are: 1.508, 1.52, 1.517, 1.514. The calculation is in the ’self-similarity1.py’ notebook. It contains

the details of the calculation of the Julia set and the regression. The box dimension of the parts is close to

each other according to the theory. We know the box dimension of the part must be equal, based on it can

conclude to the accuracy of the calculation. We can see the first decimals of values are the same, but the

second decimals are different.
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(a) d = 1.508 (b) d = 1.52

(c) d = 1.517 (d) d = 1.514

Figure 4: The sections of the Julia set of the fi.

I made the same calculation in case of parameter p =

√
3

2
i. The ranges are the same. Then the box-

counting dimensions: 1.621, 1.646, 1.618, 1.621. We found the same in this case too.
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(a) d = 1.621 (b) d = 1.646

(c) d = 1.618 (d) d = 1.621

Figure 5: The sections of the Julia set of the f√3i/2.

3.2 Fractal dimensions

In the next part of the report, I present different Julia sets and its box-counting dimension. I analyze the

real and the imaginary axis of parameter space, which means I chose real and pure complex numbers, the

reason was that along the real ax every type of dynamics appears. In the case of the imaginary parameters

the dynamics of the functions are more simple in general. I start with the real parameters, present some

typical examples in the next table. In the case of some parameters the forward iterations algorithm does not

work, because to find the periodic points need too many iterations and too high resolution. In these cases,

the estimation obviously is not correct.
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p Forward iteration dimension Backward iteration dimension

0.01 1.057 0.991

0.1 1.059 1.069

0.2 1.16 1.121

0.3 1.195 1.175

0.4 1.831 1.432

0.5 1.831 1.575

0.6 1.811 1.503
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p Forward iteration dimension Backward iteration dimension

0.7 1.911 1.533

0.8 1.858 1.540

0.9 1.609 1.509

1 1.974 1.615

1.2 1.911 1.641

1.5 1.667 1.629

15 1.132 1.016

Table 2: The table contains the estimated values of the box-counting dimension. Where the picture is missing

or the value of the dimension is about 2, there the algorithm did not find the Julia set.
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The case of the pure imaginary parameters are more simple, the Julia set is similar for the all parameter.

p Forward iteration dimension Backward iteration dimension

0.01i 1.062 0.989

0.1i 1.057 1.064

0.2i 1.122 1.106

0.3i 1.194 1.118

0.4i 1.198 1.1256

0.5i 1.245 1.39

0.6i 1.323 1.51
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p Forward iteration dimension Backward iteration dimension

0.7i 1.409 1.477

0.8i 1.491 1.522

0.9i 1.534 1.578

1i 1.55 1.529

1.2i 1.572 1.46

1.5i 1.39 1.118

15i 0.9 1.016

Table 3: The table contains the estimated values of the box-counting dimension of Julia sets of pure imaginary

parameters.

The calculations are in the ’imag.ipynb’ and ’real.ipynb’ python notebooks.
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3.3 The parameter space

I studied the structure of the parameter space from the viewpoint of the box-counting dimension. I select a

range from the parameter plane and discrediting it with a given resolution, then calculating the dimension

for every parameter. The result is presented in the following picture:

Figure 6: The structure of the parameter space. The figure is colored based on the value of the box-counting

dimension.

4 Discussion

In the project, I managed to determine the Julia set, show the self-similarity of it, and estimate its box-

counting dimension. The algorithm which is used is not enough good to determine the dimension accurately,

but I succeeded the show the appearance of fractal behavior. In the previous part, you can see the changing

of the fractal dimension depend on the parameter. For small parameters, the Julia set is a smooth closed

curve and its dimension is about 1, like in the case of big parameters too. Whit the increase of the parameter

the set becomes more roughly and its dimension is increasing too. The maximum value of the dimension

is about 1.6 (I found higher values but these appear because of the inaccuracy of the algorithm). In the

case of pure imaginary parameters the Julia set is in the center range of the complex plane. For some real

parameters, the Julia set to spread out, theoretically, in some cases, the Julia set is the whole plane.

Most errors are caused by numerical precision. Lots of information are lost because of the resolution

of the complex plane, and the maximal number of iteration. On my computer, I used 1000 × 1000 arrays

and a maximum of 2000 iterations. Basically, the box-counting dimension is not an accurate measure of

the dimension, at many times it is enough, but exists cases where not. Exists more accurate but more
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complex algorithms and methods to determine the dimension. The Hausdorff-dimension of the Julia set

can be calculated by evaluation of the derivative of the function in periodic points, but the calculate of the

periodic points is a hard problem. [4]

Conclusion

I showed quantitative of the fractal behavior of the Julia set for iterated third order functions system: the

self-similarity properties and the fractional dimension.
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