
1

Solving differential equations:
Double pendulum and deep learning

Bálint Hantos (DVTULF)

Introduction

The aim of my project is to investigate how neural networks perform at solving ordinary differential
equations. Currently, machine learning solutions are trending in the IT industry. From image and
sound processing methods through recommender systems to time series analysis it is getting
widespread to use neural networks in fields where large amounts of data is available.

Motivation

The motivation behind this project stems from the strong intertwining between differential
equation solving and the nature of neural networks. It is very important to mention, that there is
a lot of related work in this area. Notably, recently solvers were used to suggest some new neural
network architectures [1,2] as well as new training methods [3].

The usage of neural networks to tackle physical problems regarding ODE solving isn’t very new.
My personal motivation of choosing this project conceived upon reading an article about using the
MLP-model to solve the chaotic three-body problem [4]. Firstly, I thought that the model
presented in the article was poorly developed, due to the fact that the MLP-model can’t take
successivity into account.

On the other hand, recurrent neural networks, as a general tool of time series analysis, can be of
a good use, to tackle the notion of events being sequential. I propose a model in this project, which
might be capable of solving the equation of motion for the chaotic double pendulum.

Main ideas and basic equations

The double pendulum is one of the first encounters with analytically unsolvable physical systems
during undergraduate physics. Although, its differential equations can be solved iteratively, usually
on a computer. Also, it is a good example of a chaotic system.

2

During undergrad, we mostly used the Runge-Kutta-method with fixed and adaptive step sizes,
and we compared it to the Euler-method and the Euler-Cromer-method (in the case systems of
differential equations).

The double pendulum is a pendulum with another pendulum attached to its end. It exhibits rich
dynamic behavior and it’s strongly sensitive to its initial conditions. The two pendula can be
described by the masses (𝑚_1,𝑚_2) hanging on them, and their 𝑙 , 𝑙 lengths. The generalized
coordinates can be conveniently chosen to be θ , θ angles between each limb and the vertical.

The Lagrangian of such system is:

𝐿 =
𝑚 𝑙

2
𝜃 ̇ + 𝑚 𝑔 𝑙 𝑐𝑜𝑠 𝜃 +

𝑚2

2
⋅ 𝑙1

2𝜃1
2̇ + 𝑙2

2𝜃2
2̇ + 2𝑙1𝑙2𝜃1̇𝜃2̇ cos(𝜃1 − 𝜃2) +

+𝑚 𝑔 ⋅ (𝑙 cos 𝜃 + 𝑙 cos 𝜃).

Thus the equations of motion:

θ ̈ =
−𝑔(2𝑚 + 𝑚) sin 𝜃 − 𝑚 𝑔 sin(𝜃 − 2𝜃)

𝑙 (2𝑚 + 𝑚 − 𝑚 cos(2𝜃 − 2𝜃))
−

2𝑚2 sin(𝜃1 − 𝜃2) 𝜃2
2̇𝑙2 + 𝜃1

2̇𝑙1 cos(𝜃1 − 𝜃2)

𝑙1(2𝑚1 + 𝑚2 − 𝑚2 cos(2𝜃1 − 2𝜃2))
,

θ ̈ =
2 sin(θ − θ) θ ̇ 𝑙 (𝑚 + 𝑚)

𝑙 (2𝑚 + 𝑚 − 𝑚 cos(2θ − 2θ))
 +

2 sin(𝜃 − 𝜃) 𝑔(𝑚 + 𝑚)cos 𝜃

𝑙 (2𝑚 + 𝑚 − 𝑚 cos(2𝜃 − 2𝜃))
 +

+
2 sin(θ1 − θ2) θ2

2̇𝑙2𝑚2𝑐𝑜𝑠(𝜃1 − 𝜃2)

𝑙2(2𝑚1 + 𝑚2 − 𝑚2 cos(2θ1 − 2θ2))
.

The MLP-model in the [3] paper can only work with fixed size input and output. We need to use
a different approach. Instead of processing the whole series of data in one step, we only look at
two elements – the current and the previous element – of the series in each step. Therefore, it is
necessary for the neural network to store the relevant information about the previous states. For
this task a recurrent neural network is a good choice.

3

I intend to examine how the vanilla recurrent neural network (VRNN) and the long short-term
memory (LSTM) architecture perform in this task. Firstly, I’m going to use the Runge-Kutta ODE
solver to generate datapoints of a motion of a double pendulum with the same parameters (𝑚 , 𝑙)
and different initial conditions. Secondly, train the above architectures on the generated data to
predict the trajectory. Finally, measure the goodness of the fit of the trajectory with mean squared
error and energy conservation.

The tools to implement such networks can be found in the Keras open-source neural network
library. It is written in Python and can run on top of TensorFlow.

References

[1] Haber, Eldad, and Lars Ruthotto. "Stable architectures for deep neural networks." Inverse
Problems 34.1 (2017): 014004.

[2] Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural
information processing systems. 2018.

[3] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham.
Reversible architectures for arbitrarily deep residual neural networks. arXiv preprint
arXiv:1709.03698, 2017.

1. Figure: VNN (left) and LSTM (right) architectures [5]

4

[4] Breen at al.: Newton vs the machine: solving the chaotic three-body problem using deep
neural networks

[5] Viktor Varga: Deep neural networks: algorithms and architectures course at ELTE
Department of Informatics

